STORMWATER MANAGEMENT REPORT

FOR THE PROPOSED DEVELOPMENT OF

PROPERTY LOCATED AT

32 KETTLE CREEK WESTON, CT

PREPARED FOR

JON ROGERS

PREPARED ON: August 19, 2024

Revised 09-12-24

PREPARED BY:

J. EDWARDS & ASSOCIATES, LLC 227 STEPNEY ROAD, EASTON CT, 06612

Larry Edwards, P.E.

INTRODUCTION:

J. Edwards & Associates has prepared this report to demonstrate compliance with local and state engineering guidelines. These guidelines include drainage design, sediment and erosion control and site grading.

PROJECT OVERVIEW:

The property consists of 2.03 acres and is proposed for the construction of a new single family home. Based on the NRCS web soil survey the upland soils are classified in the C soil group. The site is currently undeveloped.

DRAINAGE ANALYSIS:

A Hydrologic analysis was completed using HydroCAD software which implements SCS-T20 methodology to compute runoff volumes. Rainfall intensities and depths were generated from the NOAA web site.

EVENT	24 HR. DEPTH
2 YEAR	3.3
10 YEAR	5.0
25 YEAR	5.7
50 YEAR	6.4

NOAA RAINFALL DEPTHS

The site was evaluated using SCS TR20 methodology for a 50 year 24 hour rainfall amount of 6.4 inches. The project will include the construction of a new house, driveway and pool. The study area of the lot is 36,144sf. The development of the site will result in a total of 4,864sf of impervious area.

The runoff from the newly created impervious areas will be collected by two separate subsurface infiltration systems. The driveway (1,738sf) runoff will be collected in a system of 4 Cultec 280HD units and the house roof and poll (3,126sf) runoff will be collected by a 12 Cultec 280HD unit system. This system will outlet to a splash pad on the subject property, along with the footing drain outlet.

The change in peak flows from existing conditions to proposed conditions is shown in the following table:

Event	Existing Q	Proposed Q	Change in Q
2 Year	0.89 cfs	0.76 cfs	-0.13 cfs
10 Year	1.92 cfs	1.64 cfs	-0.28 cfs
25 Year	2.37 cfs	2.02 cfs	-0.35 cfs
50 year	2.82 cfs	2.41 cfs	-0.41 cfs

227 Stepney Road • Easton, CT • 06612 • Phone:203.268.4205 • Fax: 203.268.5604 www.jedwardsassoc.com • www.leassoc.com

Engineering • Surveying • Site Planning

Water Qual	ity Volume (V	VQV) Calcul	ation		
PROJECT		IOB #3007		DDEDA	IF
DATE		Volume (WQV) Calcu JOB #3007 8/19/2024 32 KETTLE CREEK ROAD, 1) = Drainage Area Subcatchment-1 Subcatchment-2 Subcatchment-3 Total Impervious OLUME (WQV) CALCULATION Design Precipitation (P) = % Impervious Cover (I) = % Impervious Cover (CHECK	I F
SUBJECT	32 KETTI	E CREEK POAD	WESTON	CHECK	
Notes:	JZ NETH	LE GALLA ROAD, I	ALCI ON		
notes.					
TOTAL SITE AREA	Δ (Δ) =		2.03	acres	
TO THE ONE PARE	· (·) -		2.00	40/00	
DRAINAGE AREA	s				
Die alle toe rater		Drainage Area	Impervious Area		
		Subcatchment-1	0.14		
		Subcatchment-2	0.00	1	
		Subcatchment-3	0.00	Ť	
		Total Impervious	0.14	6.7%	
		rotarimpervious	0.14	0.176	
WATER OUAL ITY					
TATER QUALITY		CALCOLATION			
	Design	Precipitation (P) =	13	inch	
	% Impe	rvious Cover (I) =	67		
	Volumetric Runof	f Coefficient (R) =	0 110		
	v oramourio (valio)	- ocomolonic (iv) =	0.110		
		WOV =	0.024	ac_ft	
		113(V -	1052	cu-ft	
			1002		
		1/2 WOV-	0.012	ac ft	
		1/2 WGV=	526	cu_ft	
		_	320	ou-n	
		-			
	$WQV = \frac{(1'')(1)}{1}$	$\frac{R(A)}{2}$			
	_ 1	2			
	where: W	OV = water or	uality volume (ac-ft) —	
	D	= volumet	ric runoff coef	ficient —	
	A	= 0.05.1	0.000(1)	incherine	
		= 0.05+0	.009(1)		
	1	= percent	impervious co	ver	
	A	= site area	in acres		

227 Stepney Road • Easton, CT • 06612 • Phone:203.268.4205 • Fax: 203.268.5604 www.jedwardsassoc.com • www.leassoc.com Engineering • Surveying • Site Planning

Storage for Roof Drain System

SYSTEM STORAGE

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
282.50	586	0
282.60	586	23
282.70	586	47
282.80	586	70
282.90	586	94
283.00	586	117
283.10	586	161
283.20	586	204
283.30	586	247
283.40	586	289
283.50	586	332
283.60	586	374
283.70	586	415
283.80	586	456
283.90	586	497
284.00	586	537
284.10	586	578
284.20	586	617
284.30	586	656
284.40	586	694
284.50	586	731
284.60	586	768
284.70	586	803
284.80	586	837
284 90	586	869
285.00	586	899
285.10	586	925
285.20	586	950
285.30	586	973
285.40	586	996
285.50	586	1,020
285.60	586	1,043
285.70	586	1,067
285.80	586	1,090
285.90	586	1,114
286.00	586	1,137
286.10	586	1,160
286.20	586	1,184

Storage for Driveway Drain System

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
282.50	244	0
282.60	244	10
282.70	244	20
282.80	244	29
282.90	244	39
283.00	244	49
283.10	244	65
283.20	244	82
283.30	244	98
283.40	244	115
283.50	244	131
283.60	244	147
283.70	244	163
283.80	244	179
283.90	244	195
284.00	244	210
284.10	244	226
284.20	244	241
284.30	244	256
284.40	244	271
284.50	244	286
284.60	244	300
284.70	244	314
284.80	244	327
284.90	244	340
285.00	244	352
285.10	244	363
285.20	244	373
285.30	244	382
285.40	244	392
285.50	244	402
285.60	244	412
285.70	244	421
285.80	244	431
285.90	244	441
286.00	244	451
286.10	244	460
286.20	244	470

Outlet Protection

Outlet protection is provided by a 10'X10' stone pad for discharge from the subsurface stormwater infiltration system as well as the proposed house footing drain.

CONCLUSION

The proposed development will increase the amount of impervious area on the site, resulting in higher peak runoff rates. However, with the installation of the proposed detention system, the original flow patterns will be maintained and there will be no increase in peak runoff for the 2, 10, 25, and 50-year storm events.

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(nours)		(inches)	
1	2 yr	Type III 24-hr		Default	24.00	1	3.30	2
2	10 yr	Type III 24-hr		Default	24.00	1	5.00	2
3	25 yr	Type III 24-hr		Default	24.00	1	5.70	2
4	50yr	Type III 24-hr		Default	24.00	1	6.40	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.112	98	Unconnected pavement, HSG C (8S, 12S)
1.548	76	Woods/grass comb., Fair, HSG C (3S, 7S)
1.660	77	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
1.660	HSG C	3S, 7S, 8S, 12S
0.000	HSG D	
0.000	Other	
1.660		TOTAL AREA

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.000	0.112	0.000	0.000	0.112	Unconnected pavement	8S, 12S
0.000	0.000	1.548	0.000	0.000	1.548	Woods/grass comb., Fair	3S, 7S
0.000	0.000	1.660	0.000	0.000	1.660	TOTAL AREA	

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 3S: Q BYPASS	Runoff Area=31,280 sf 0.00% Impervious Runoff Depth>1.12" Tc=14.2 min CN=76 Runoff=0.76 cfs 0.067 af
Subcatchment7S: EXISTING Q	Runoff Area=36,144 sf 0.00% Impervious Runoff Depth>1.12" Flow Length=300' Tc=13.6 min CN=76 Runoff=0.89 cfs 0.077 af
Subcatchment8S: ROOF POOL	Runoff Area=3,126 sf 100.00% Impervious Runoff Depth>2.92" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.18 cfs 0.017 af
Subcatchment12S: DRIVE	Runoff Area=1,738 sf 100.00% Impervious Runoff Depth>2.92" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.10 cfs 0.010 af
Reach 4R: TOTAL Q PROPOSED	Inflow=0.76 cfs 0.067 af Outflow=0.76 cfs 0.067 af
Pond 11P: 25 280HD Discarded=0.01	Peak Elev=283.52' Storage=341 cf Inflow=0.18 cfs 0.017 af cfs 0.013 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.013 af
Pond 13P: 25 280HD Discarded=0.01	Peak Elev=284.03' Storage=215 cf Inflow=0.10 cfs 0.010 af cfs 0.006 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.006 af
Total Runoff Area = 1.660	ac Runoff Volume = 0.171 af Average Runoff Depth = 1.24" 93.27% Pervious = 1.548 ac 6.73% Impervious = 0.112 ac

Summary for Subcatchment 3S: Q BYPASS

Runoff = 0.76 cfs @ 12.21 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED 0.067 af, Depth> 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.30"

Summary for Subcatchment 7S: EXISTING Q

Runoff = 0.89 cfs @ 12.20 hrs, Volume= 0.077 af, Depth> 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.30"

A	rea (sf)	CN D	Description		
	36,144	76 V	Voods/gras	s comb., F	air, HSG C
	36,144	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.9	200	0.1000	0.26		Sheet Flow,
0.7	100	0.1200	2.42		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
13.6	300	Total			

Subcatchment 7S: EXISTING Q

Summary for Subcatchment 8S: ROOF POOL

Runoff = 0.18 cfs @ 12.17 hrs, Volume= Routed to Pond 11P : 25 280HD 0.017 af, Depth> 2.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.30"

	A	rea (sf)	CN E	Description			
		3,126	98 L	Inconnecte	ed pavemer	nt, HSG C	
3,126 100.00% Impervious Area 3,126 100.00% Unconnected							
(m	Tc iin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
1	1.9	200	0.1200	0.28		Sheet Flow, LAWN	
(0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps	
11	2.8	500	Total				

Subcatchment 8S: ROOF POOL

Summary for Subcatchment 12S: DRIVE

Runoff = 0.10 cfs @ 12.17 hrs, Volume= Routed to Pond 13P : 25 280HD 0.010 af, Depth> 2.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.30"

A	rea (sf)	CN E	Description					
	1,738	98 L	Inconnecte	ed pavemer	nt, HSG C			
	1,738 1,738	100.00% Impervious Area 100.00% Unconnected						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.9	200	0.1200	0.28		Sheet Flow, LAWN Grass: Dense n= 0.240 P2= 3.30"			
0.9	300	0.0800	5.74		Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps			
12.8	500	Total						

Subcatchment 12S: DRIVE

Summary for Reach 4R: TOTAL Q PROPOSED

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.830 ac,	13.46% Imp	ervious,	Inflow De	epth > 0	.97" fo	r 2 y	r event	
Inflow	=	0.76 cfs @	12.21 hrs,	Volume	=	0.067 af				
Outflow	=	0.76 cfs @	12.21 hrs,	Volume	=	0.067 af	, Atten=	0%,	Lag= 0.0 r	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 4R: TOTAL Q PROPOSED

Summary for Pond 11P: 25 280HD

Inflow Area = 0.072 ac,100.00% Impervious, Inflow Depth > 2.92" for 2 yr event Inflow 0.18 cfs @ 12.17 hrs, Volume= 0.017 af = 0.01 cfs @ 10.85 hrs, Volume= Outflow = 0.013 af, Atten= 93%, Lag= 0.0 min Discarded = 0.01 cfs @ 10.85 hrs, Volume= 0.013 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 283.52' @ 13.86 hrs Surf.Area= 586 sf Storage= 341 cf

Plug-Flow detention time= 155.2 min calculated for 0.013 af (76% of inflow) Center-of-Mass det. time= 94.5 min (828.2 - 733.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	658 cf	17.75'W x 33.00'L x 3.71'H Field A
			2,172 cf Overall - 528 cf Embedded = 1,644 cf x 40.0% Voids
#2A	283.00'	528 cf	Cultec R-280HD x 12 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 3 rows
		1,186 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Sur	face area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 10.85 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=282.50' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Pond 11P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 3 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 29.00' Row Length +24.0" End Stone x 2 = 33.00' Base Length 3 Rows x 47.0" Wide + 12.0" Spacing x 2 + 24.0" Side Stone x 2 = 17.75' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

12 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 3 Rows = 528.2 cf Chamber Storage

2,172.2 cf Field - 528.2 cf Chambers = 1,643.9 cf Stone x 40.0% Voids = 657.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,185.8 cf = 0.027 afOverall Storage Efficiency = 54.6%Overall System Size = $33.00' \times 17.75' \times 3.71'$

12 Chambers 80.5 cy Field 60.9 cy Stone

Hydrograph Inflow
 Outflow
 Discarded 0.18 cfs Inflow Area=0.072 ac Primary 0.2 Peak Elev=283.52' 0.19 0.18 Storage=341 cf 0.17 0.16 0.15-0.14-0.13 (s) 0.12 0.11 0.12 Flow 0.1 0.09 0.08 0.07 0.06 0.05 0.01.cfs 0.01 cfs 0.04 0.03 0 02 0.00 cfs 0-4 1 2 ż 4 5 8 ģ 10 11 12 13 14 15 16 17 18 19 20 6 7 Time (hours)

Pond 11P: 25 280HD

Summary for Pond 13P: 25 280HD

Inflow Area = 0.040 ac,100.00% Impervious, Inflow Depth > 2.92" for 2 yr event Inflow 0.10 cfs @ 12.17 hrs, Volume= 0.010 af = 0.01 cfs @ 10.15 hrs, Volume= Outflow = 0.006 af, Atten= 95%, Lag= 0.0 min Discarded = 0.01 cfs @ 10.15 hrs, Volume= 0.006 af 0.000 af Primary = 0.00 cfs @ 0.00 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 284.03' @ 14.74 hrs Surf.Area= 244 sf Storage= 215 cf

Plug-Flow detention time= 154.7 min calculated for 0.006 af (61% of inflow) Center-of-Mass det. time= 72.5 min (806.2 - 733.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	289 cf	12.83'W x 19.00'L x 3.71'H Field A
			904 cf Overall - 182 cf Embedded = 722 cf x 40.0% Voids
#2A	283.00'	182 cf	Cultec R-280HD x 4 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 2 rows
		471 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Sur	face area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 10.15 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=282.50' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Pond 13P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 2 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 15.00' Row Length +24.0" End Stone x 2 = 19.00' Base Length 2 Rows x 47.0" Wide + 12.0" Spacing x 1 + 24.0" Side Stone x 2 = 12.83' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

4 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 2 Rows = 182.2 cf Chamber Storage

904.2 cf Field - 182.2 cf Chambers = 722.1 cf Stone x 40.0% Voids = 288.8 cf Stone Storage

Chamber Storage + Stone Storage = 471.0 cf = 0.011 af Overall Storage Efficiency = 52.1% Overall System Size = 19.00' x 12.83' x 3.71'

4 Chambers 33.5 cy Field 26.7 cy Stone

 Type III 24-hr
 2 yr Rainfall=3.30"

 Printed
 9/12/2024

 C
 Page 17

Pond 13P: 25 280HD

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 3S: Q BYPASS	Runoff Area=31,280 sf 0.00% Impervious Runoff Depth>2.35" Tc=14.2 min CN=76 Runoff=1.64 cfs 0.141 af
Subcatchment7S: EXISTING Q	Runoff Area=36,144 sf 0.00% Impervious Runoff Depth>2.35" Flow Length=300' Tc=13.6 min CN=76 Runoff=1.92 cfs 0.162 af
Subcatchment8S: ROOF POOL	Runoff Area=3,126 sf 100.00% Impervious Runoff Depth>4.54" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.28 cfs 0.027 af
Subcatchment12S: DRIVE	Runoff Area=1,738 sf 100.00% Impervious Runoff Depth>4.54" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.16 cfs 0.015 af
Reach 4R: TOTAL Q PROPOSED	Inflow=1.64 cfs 0.142 af Outflow=1.64 cfs 0.142 af
Pond 11P: 25 280HD Discarded=0.01	Peak Elev=284.23' Storage=629 cf Inflow=0.28 cfs 0.027 af cfs 0.015 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.015 af
Pond 13P: 25 280HD Discarded=0.01	Peak Elev=285.05' Storage=358 cf Inflow=0.16 cfs 0.015 af cfs 0.007 af Primary=0.01 cfs 0.001 af Outflow=0.01 cfs 0.008 af
Total Runoff Area = 1.660	ac Runoff Volume = 0.345 af Average Runoff Depth = 2.50" 93.27% Pervious = 1.548 ac 6.73% Impervious = 0.112 ac

Summary for Subcatchment 3S: Q BYPASS

Runoff = 1.64 cfs @ 12.20 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED 0.141 af, Depth> 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.00"

Summary for Subcatchment 7S: EXISTING Q

Runoff = 1.92 cfs @ 12.19 hrs, Volume= 0.162 af, Depth> 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.00"

A	rea (sf)	CN D	escription			
	36,144	76 V	Voods/gras	s comb., F	air, HSG C	
	36,144	1	00.00% Pe	ervious Are	а	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.9	200	0.1000	0.26		Sheet Flow,	
0.7	100	0.1200	2.42		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
13.6	300	Total				

Subcatchment 7S: EXISTING Q

Summary for Subcatchment 8S: ROOF POOL

0.28 cfs @ 12.17 hrs, Volume= Runoff = Routed to Pond 11P : 25 280HD

0.027 af, Depth> 4.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.00"

A	rea (sf)	CN D	Description			
	3,126	98 L	Inconnecte	ed pavemer	nt, HSG C	
	3,126	1	00.00% Im	pervious A	rea	
	3,126	1	00.00% Uı	rconnected		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.9	200	0.1200	0.28		Sheet Flow, LAWN	
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps	
12.8	500	Total				

Subcatchment 8S: ROOF POOL

Hydrograph

Summary for Subcatchment 12S: DRIVE

Runoff = 0.16 cfs @ 12.17 hrs, Volume= Routed to Pond 13P : 25 280HD 0.015 af, Depth> 4.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.00"

A	rea (sf)	CN D	escription			
	1,738	98 L	Inconnecte	ed pavemer	nt, HSG C	
	1,738	1	00.00% Im	pervious A	rea	
	1,738	1	00.00% Uı	rconnected		
Тс	Lenath	Slope	Velocitv	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
11.9	200	0.1200	0.28		Sheet Flow, LAWN	
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps	
12.8	500	Total				

Subcatchment 12S: DRIVE

Summary for Reach 4R: TOTAL Q PROPOSED

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.830 ac, 1	13.46% Impe	ervious,	Inflow Dep	oth > 2.	05" for	10 yr event	
Inflow	=	1.64 cfs @	12.20 hrs,	Volume	= (0.142 af			
Outflow	=	1.64 cfs @	12.20 hrs,	Volume	= (0.142 af,	, Atten= (0%, Lag= 0.0	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 4R: TOTAL Q PROPOSED

Summary for Pond 11P: 25 280HD

Inflow Area = 0.072 ac,100.00% Impervious, Inflow Depth > 4.54" for 10 yr event Inflow = 0.28 cfs @ 12.17 hrs, Volume= 0.027 af 0.01 cfs @ 9.55 hrs, Volume= Outflow = 0.015 af, Atten= 95%, Lag= 0.0 min Discarded = 9.55 hrs, Volume= 0.01 cfs @ 0.015 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 284.23' @ 15.19 hrs Surf.Area= 586 sf Storage= 629 cf

Plug-Flow detention time= 150.9 min calculated for 0.015 af (56% of inflow) Center-of-Mass det. time= 56.0 min (782.3 - 726.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	658 cf	17.75'W x 33.00'L x 3.71'H Field A
			2,172 cf Overall - 528 cf Embedded = 1,644 cf x 40.0% Voids
#2A	283.00'	528 cf	Cultec R-280HD x 12 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 3 rows
		1,186 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Su	rface area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 9.55 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=282.50' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Pond 11P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 3 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 29.00' Row Length +24.0" End Stone x 2 = 33.00' Base Length 3 Rows x 47.0" Wide + 12.0" Spacing x 2 + 24.0" Side Stone x 2 = 17.75' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

12 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 3 Rows = 528.2 cf Chamber Storage

2,172.2 cf Field - 528.2 cf Chambers = 1,643.9 cf Stone x 40.0% Voids = 657.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,185.8 cf = 0.027 af Overall Storage Efficiency = 54.6% Overall System Size = 33.00' x 17.75' x 3.71'

12 Chambers 80.5 cy Field 60.9 cy Stone

Pond 11P: 25 280HD

Summary for Pond 13P: 25 280HD

Inflow Area = 0.040 ac,100.00% Impervious, Inflow Depth > 4.54" for 10 yr event Inflow 0.16 cfs @ 12.17 hrs, Volume= 0.015 af = 0.01 cfs @ 13.52 hrs, Volume= Outflow = 0.008 af, Atten= 92%, Lag= 80.9 min Discarded = 0.01 cfs @ 8.75 hrs, Volume= 0.007 af 0.01 cfs @ 13.52 hrs, Volume= Primary = 0.001 af Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 285.05' @ 13.52 hrs Surf.Area= 244 sf Storage= 358 cf

Plug-Flow detention time= 149.1 min calculated for 0.008 af (50% of inflow) Center-of-Mass det. time= 44.0 min (770.3 - 726.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	289 cf	12.83'W x 19.00'L x 3.71'H Field A
			904 cf Overall - 182 cf Embedded = 722 cf x 40.0% Voids
#2A	283.00'	182 cf	Cultec R-280HD x 4 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 2 rows
		471 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Discarded	282.50'	1.000 in/hr OUT over Surfac	ce area
#2	Primary	285.00'	4.0" Vert. Orifice/Grate C=	0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.01 cfs @ 8.75 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.01 cfs @ 13.52 hrs HW=285.05' (Free Discharge) **2=Orifice/Grate** (Orifice Controls 0.01 cfs @ 0.79 fps)

Pond 13P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 2 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 15.00' Row Length +24.0" End Stone x 2 = 19.00' Base Length 2 Rows x 47.0" Wide + 12.0" Spacing x 1 + 24.0" Side Stone x 2 = 12.83' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

4 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 2 Rows = 182.2 cf Chamber Storage

904.2 cf Field - 182.2 cf Chambers = 722.1 cf Stone x 40.0% Voids = 288.8 cf Stone Storage

Chamber Storage + Stone Storage = 471.0 cf = 0.011 af Overall Storage Efficiency = 52.1% Overall System Size = 19.00' x 12.83' x 3.71'

4 Chambers 33.5 cy Field 26.7 cy Stone

Pond 13P: 25 280HD

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment3S: Q BYPASS	Runoff Area=31,280 sf 0.00% Impervious Runoff Depth>2.90" Tc=14.2 min CN=76 Runoff=2.02 cfs 0.174 af
Subcatchment7S: EXISTING Q	Runoff Area=36,144 sf 0.00% Impervious Runoff Depth>2.90" Flow Length=300' Tc=13.6 min CN=76 Runoff=2.37 cfs 0.201 af
Subcatchment8S: ROOF POOL	Runoff Area=3,126 sf 100.00% Impervious Runoff Depth>5.20" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.32 cfs 0.031 af
Subcatchment 12S: DRIVE	Runoff Area=1,738 sf 100.00% Impervious Runoff Depth>5.20" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.18 cfs 0.017 af
Reach 4R: TOTAL Q PROPOSED	Inflow=2.02 cfs 0.176 af Outflow=2.02 cfs 0.176 af
Pond 11P: 25 280HD Discarded=0.01	Peak Elev=284.58' Storage=761 cf Inflow=0.32 cfs 0.031 af cfs 0.016 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.016 af
Pond 13P: 25 280HD Discarded=0.01	Peak Elev=285.14' Storage=366 cf Inflow=0.18 cfs 0.017 af cfs 0.007 af Primary=0.04 cfs 0.003 af Outflow=0.05 cfs 0.010 af
Total Runoff Area = 1.660	ac Runoff Volume = 0.423 af Average Runoff Depth = 3.06" 93.27% Pervious = 1.548 ac 6.73% Impervious = 0.112 ac

Summary for Subcatchment 3S: Q BYPASS

Runoff = 2.02 cfs @ 12.20 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED 0.174 af, Depth> 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=5.70"

Summary for Subcatchment 7S: EXISTING Q

Runoff = 2.37 cfs @ 12.19 hrs, Volume= 0.201 af, Depth> 2.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=5.70"

A	rea (sf)	CN D	escription			
	36,144	76 V	Voods/gras	s comb., F	air, HSG C	
	36,144	1	00.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.9	200	0.1000	0.26		Sheet Flow,	
0.7	100	0.1200	2.42		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
13.6	300	Total				

Subcatchment 7S: EXISTING Q

Summary for Subcatchment 8S: ROOF POOL

Runoff = 0.32 cfs @ 12.17 hrs, Volume= Routed to Pond 11P : 25 280HD 0.031 af, Depth> 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=5.70"

A	rea (sf)	CN D	escription					
	3,126	98 L	Inconnecte	ed pavemer	nt, HSG C			
	3,126 3,126	1 1	100.00% Impervious Area 100.00% Unconnected					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.9	200	0.1200	0.28		Sheet Flow, LAWN			
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps			
12.8	500	Total						

Subcatchment 8S: ROOF POOL

Summary for Subcatchment 12S: DRIVE

Runoff = 0.18 cfs @ 12.17 hrs, Volume= Routed to Pond 13P : 25 280HD 0.017 af, Depth> 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=5.70"

A	rea (sf)	CN D	escription						
	1,738	98 U	Inconnecte	ed pavemer	nt, HSG C				
	1,738 1,738	1 1	100.00% Impervious Area 100.00% Unconnected						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
11.9	200	0.1200	0.28		Sheet Flow, LAWN				
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps				
12.8	500	Total							

Subcatchment 12S: DRIVE

Summary for Reach 4R: TOTAL Q PROPOSED

[40] Hint: Not Described (Outflow=Inflow)

Inflow Ar	ea =	0.830 ac,	13.46% Imp	ervious,	Inflow Dep	oth > 2.5	55" for 2	5 yr event
Inflow	=	2.02 cfs @	12.20 hrs,	Volume	= (0.176 af		
Outflow	=	2.02 cfs @	12.20 hrs,	Volume	= (0.176 af,	Atten= 0%	o, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 4R: TOTAL Q PROPOSED

Summary for Pond 11P: 25 280HD

Inflow Area = 0.072 ac,100.00% Impervious, Inflow Depth > 5.20" for 25 yr event Inflow 0.32 cfs @ 12.17 hrs, Volume= 0.031 af = 0.01 cfs @ 9.15 hrs, Volume= Outflow = 0.016 af, Atten= 96%, Lag= 0.0 min Discarded = 9.15 hrs, Volume= 0.01 cfs @ 0.016 af 0.000 af Primary = 0.00 cfs @ 0.00 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 284.58' @ 15.60 hrs Surf.Area= 586 sf Storage= 761 cf

Plug-Flow detention time= 150.3 min calculated for 0.016 af (50% of inflow) Center-of-Mass det. time= 43.3 min (767.5 - 724.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	658 cf	17.75'W x 33.00'L x 3.71'H Field A
			2,172 cf Overall - 528 cf Embedded = 1,644 cf x 40.0% Voids
#2A	283.00'	528 cf	Cultec R-280HD x 12 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 3 rows
		1,186 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Su	rface area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 9.15 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=282.50' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Pond 11P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 3 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 29.00' Row Length +24.0" End Stone x 2 = 33.00' Base Length 3 Rows x 47.0" Wide + 12.0" Spacing x 2 + 24.0" Side Stone x 2 = 17.75' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

12 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 3 Rows = 528.2 cf Chamber Storage

2,172.2 cf Field - 528.2 cf Chambers = 1,643.9 cf Stone x 40.0% Voids = 657.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,185.8 cf = 0.027 afOverall Storage Efficiency = 54.6%Overall System Size = $33.00' \times 17.75' \times 3.71'$

12 Chambers 80.5 cy Field 60.9 cy Stone

Pond 11P: 25 280HD

Summary for Pond 13P: 25 280HD

Inflow Area = 0.040 ac,100.00% Impervious, Inflow Depth > 5.20" for 25 yr event Inflow 0.18 cfs @ 12.17 hrs, Volume= 0.017 af = 0.05 cfs @ 12.62 hrs, Volume= Outflow = 0.010 af, Atten= 73%, Lag= 26.8 min Discarded = 0.01 cfs @ 8.40 hrs, Volume= 0.007 af Primary = 0.04 cfs @ 12.62 hrs, Volume= 0.003 af Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 285.14' @ 12.62 hrs Surf.Area= 244 sf Storage= 366 cf

Plug-Flow detention time= 134.1 min calculated for 0.010 af (56% of inflow) Center-of-Mass det. time= 38.1 min (762.3 - 724.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	289 cf	12.83'W x 19.00'L x 3.71'H Field A
			904 cf Overall - 182 cf Embedded = 722 cf x 40.0% Voids
#2A	283.00'	182 cf	Cultec R-280HD x 4 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 2 rows
		471 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Su	rface area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 8.40 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.04 cfs @ 12.62 hrs HW=285.13' (Free Discharge) **2=Orifice/Grate** (Orifice Controls 0.04 cfs @ 1.25 fps)

Pond 13P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 2 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 15.00' Row Length +24.0" End Stone x 2 = 19.00' Base Length 2 Rows x 47.0" Wide + 12.0" Spacing x 1 + 24.0" Side Stone x 2 = 12.83' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

4 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 2 Rows = 182.2 cf Chamber Storage

904.2 cf Field - 182.2 cf Chambers = 722.1 cf Stone x 40.0% Voids = 288.8 cf Stone Storage

Chamber Storage + Stone Storage = 471.0 cf = 0.011 af Overall Storage Efficiency = 52.1% Overall System Size = 19.00' x 12.83' x 3.71'

4 Chambers 33.5 cy Field 26.7 cy Stone

 Type III 24-hr
 25 yr Rainfall=5.70"

 Printed
 9/12/2024

 LC
 Page 41

Pond 13P: 25 280HD

Time span=0.00-20.00 hrs, dt=0.05 hrs, 401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 3S: Q BYPASS	Runoff Area=31,280 sf 0.00% Impervious Runoff Depth>3.47" Tc=14.2 min CN=76 Runoff=2.41 cfs 0.208 af
Subcatchment7S: EXISTING Q	Runoff Area=36,144 sf 0.00% Impervious Runoff Depth>3.47" Flow Length=300' Tc=13.6 min CN=76 Runoff=2.82 cfs 0.240 af
Subcatchment 8S: ROOF POOL	Runoff Area=3,126 sf 100.00% Impervious Runoff Depth>5.87" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.36 cfs 0.035 af
Subcatchment 12S: DRIVE	Runoff Area=1,738 sf 100.00% Impervious Runoff Depth>5.87" Flow Length=500' Tc=12.8 min CN=98 Runoff=0.20 cfs 0.020 af
Reach 4R: TOTAL Q PROPOSED	Inflow=2.41 cfs 0.212 af Outflow=2.41 cfs 0.212 af
Pond 11P: 25 280HD Discarded=0.01	Peak Elev=284.99' Storage=897 cf Inflow=0.36 cfs 0.035 af cfs 0.016 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.016 af
Pond 13P: 25 280HD Discarded=0.01	Peak Elev=285.21' Storage=374 cf Inflow=0.20 cfs 0.020 af cfs 0.007 af Primary=0.09 cfs 0.005 af Outflow=0.10 cfs 0.012 af
Total Runoff Area = 1.660	ac Runoff Volume = 0.503 af Average Runoff Depth = 3.64" 93.27% Pervious = 1.548 ac 6.73% Impervious = 0.112 ac

Summary for Subcatchment 3S: Q BYPASS

Runoff = 2.41 cfs @ 12.20 hrs, Volume= Routed to Reach 4R : TOTAL Q PROPOSED 0.208 af, Depth> 3.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50yr Rainfall=6.40"

Summary for Subcatchment 7S: EXISTING Q

Runoff = 2.82 cfs @ 12.19 hrs, Volume= 0.240 af, Depth> 3.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50yr Rainfall=6.40"

A	rea (sf)	CN D	escription				
	36,144 76 Woods/grass comb., Fair, HSG C						
	36,144	1	00.00% Pe	ervious Are	a	_	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
12.9	200	0.1000	0.26		Sheet Flow,	_	
0.7	100	0.1200	2.42		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
13.6	300	Total					

Subcatchment 7S: EXISTING Q

Summary for Subcatchment 8S: ROOF POOL

Runoff = 0.36 cfs @ 12.17 hrs, Volume= Routed to Pond 11P : 25 280HD

0.035 af, Depth> 5.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50yr Rainfall=6.40"

A	rea (sf)	CN D	escription						
	3,126	98 L	J8 Unconnected pavement, HSG C						
	3,126	1	00.00% Im	pervious A	rea				
	3,126	1	00.00% Uı	rconnected					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
11.9	200	0.1200	0.28		Sheet Flow, LAWN				
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps				
12.8	500	Total							

Subcatchment 8S: ROOF POOL

Summary for Subcatchment 12S: DRIVE

Runoff = 0.20 cfs @ 12.17 hrs, Volume= Routed to Pond 13P : 25 280HD 0.020 af, Depth> 5.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50yr Rainfall=6.40"

A	rea (sf)	CN D	escription						
	1,738 98 Unconnected pavement, HSG C								
1,738100.00% Impervious Area1,738100.00% Unconnected									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
11.9	200	0.1200	0.28		Sheet Flow, LAWN				
0.9	300	0.0800	5.74		Grass: Dense n= 0.240 P2= 3.30" Shallow Concentrated Flow, DRIVE Paved Kv= 20.3 fps				
12.8	500	Total							

Subcatchment 12S: DRIVE

Summary for Reach 4R: TOTAL Q PROPOSED

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.830 ac,	13.46% Imp	ervious,	Inflow De	pth > 3.0	07" for ξ	50yr event	
Inflow	=	2.41 cfs @	12.20 hrs,	Volume	=	0.212 af			
Outflow	=	2.41 cfs @	12.20 hrs,	Volume	=	0.212 af,	Atten= 0°	%, Lag= 0.0 mir	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs

Reach 4R: TOTAL Q PROPOSED

Summary for Pond 11P: 25 280HD

Inflow Area	=	0.072	2 ac,100	0.00% Imp	ervious,	Inflow	Depth >	5.87'	" for	50yr	event	
Inflow	=	0.36	cfs @	12.17 hrs,	Volume	=	0.035	af		-		
Outflow	=	0.01	cfs @	8.80 hrs,	Volume	=	0.016	af, A	tten=	96%,	Lag= 0.0) min
Discarded	=	0.01	cfs @	8.80 hrs,	Volume	=	0.016	af				
Primary	=	0.00	cfs @	0.00 hrs,	Volume	=	0.000	af				
Routed	to Reacl	h 4R :	TOTAL	. Q PROPC	DSED							

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 284.99' @ 15.91 hrs Surf.Area= 586 sf Storage= 897 cf

Plug-Flow detention time= 151.4 min calculated for 0.016 af (46% of inflow) Center-of-Mass det. time= 31.7 min (754.2 - 722.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	658 cf	17.75'W x 33.00'L x 3.71'H Field A
			2,172 cf Overall - 528 cf Embedded = 1,644 cf x 40.0% Voids
#2A	283.00'	528 cf	Cultec R-280HD x 12 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 3 rows
		1,186 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Discarded	282.50'	1.000 in/hr OUT over Su	rface area	Limited to weir flow at low heads
#2	Primary	285.00'	4.0" Vert. Orifice/Grate	C= 0.600	

Discarded OutFlow Max=0.01 cfs @ 8.80 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=282.50' (Free Discharge)

Pond 11P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 3 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 29.00' Row Length +24.0" End Stone x 2 = 33.00' Base Length 3 Rows x 47.0" Wide + 12.0" Spacing x 2 + 24.0" Side Stone x 2 = 17.75' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

12 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 3 Rows = 528.2 cf Chamber Storage

2,172.2 cf Field - 528.2 cf Chambers = 1,643.9 cf Stone x 40.0% Voids = 657.6 cf Stone Storage

Chamber Storage + Stone Storage = 1,185.8 cf = 0.027 afOverall Storage Efficiency = 54.6%Overall System Size = $33.00' \times 17.75' \times 3.71'$

12 Chambers 80.5 cy Field 60.9 cy Stone

 Type III 24-hr
 50yr Rainfall=6.40"

 Printed
 9/12/2024

 C
 Page 50

Pond 11P: 25 280HD

Summary for Pond 13P: 25 280HD

Inflow Area = 0.040 ac,100.00% Impervious, Inflow Depth > 5.87" for 50yr event Inflow 0.20 cfs @ 12.17 hrs, Volume= 0.020 af = 0.10 cfs @ 12.45 hrs, Volume= Outflow = 0.012 af, Atten= 53%, Lag= 16.9 min Discarded = 7.90 hrs, Volume= 0.01 cfs @ 0.007 af 0.09 cfs @ 12.45 hrs, Volume= Primary = 0.005 af Routed to Reach 4R : TOTAL Q PROPOSED

Routing by Stor-Ind method, Time Span= 0.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 285.21' @ 12.45 hrs Surf.Area= 244 sf Storage= 374 cf

Plug-Flow detention time= 121.2 min calculated for 0.012 af (60% of inflow) Center-of-Mass det. time= 33.2 min (755.7 - 722.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	282.50'	289 cf	12.83'W x 19.00'L x 3.71'H Field A
			904 cf Overall - 182 cf Embedded = 722 cf x 40.0% Voids
#2A	283.00'	182 cf	Cultec R-280HD x 4 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 2 rows
		471 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Discarded	282.50'	1.000 in/hr OUT over Surface area	
#2	Primary	285.00'	4.0" Vert. Orifice/Grate C= 0.600 Limited to we	r flow at low heads

Discarded OutFlow Max=0.01 cfs @ 7.90 hrs HW=282.54' (Free Discharge) **1=OUT** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.09 cfs @ 12.45 hrs HW=285.21' (Free Discharge) **2=Orifice/Grate** (Orifice Controls 0.09 cfs @ 1.56 fps)

Pond 13P: 25 280HD - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)

Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap Row Length Adjustment= +1.00' x 6.07 sf x 2 rows

47.0" Wide + 12.0" Spacing = 59.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 15.00' Row Length +24.0" End Stone x 2 = 19.00' Base Length 2 Rows x 47.0" Wide + 12.0" Spacing x 1 + 24.0" Side Stone x 2 = 12.83' Base Width 6.0" Stone Base + 26.5" Chamber Height + 12.0" Stone Cover = 3.71' Field Height

4 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 2 Rows = 182.2 cf Chamber Storage

904.2 cf Field - 182.2 cf Chambers = 722.1 cf Stone x 40.0% Voids = 288.8 cf Stone Storage

Chamber Storage + Stone Storage = 471.0 cf = 0.011 af Overall Storage Efficiency = 52.1% Overall System Size = 19.00' x 12.83' x 3.71'

4 Chambers 33.5 cy Field 26.7 cy Stone

 Type III 24-hr
 50yr Rainfall=6.40"

 Printed
 9/12/2024

 C
 Page 53

Pond 13P: 25 280HD